

In cooperation with the Pediatric Infectious Disease Society of the Philippines Funded by the Philippine Pediatric Society

EVIDENCE SUMMARY

Which clinical specimens can be used as an alternative to nasopharyngeal swab RT-PCR for the diagnosis of COVID-19 infection in children?

Evidence Reviewers: Eva I. Bautista, MD, MSc, FPPS, Ma. Lucila M. Perez, MD, MSc, FPPS, Maria Teresa S. Tolosa, MD, D Clin Epi, FPDS; Leonila F. Dans, MD, MS

Recommendations

As an alternative specimen to nasopharyngeal swab, we recommend the use of saliva specimen for RT-PCR* among non-hospitalized children suspected of COVID-19 infection.

*Nasopharyngeal swab is the specimen of choice for RT-PCR for the diagnosis of COVID-19 infection in children. The use of three specific saliva RT-PCR assays is recommended: Allplex 2019-nCOV assay, Cobas 6800, or QuantStudio 7 system.

Certainty of evidence: Moderate Strength of recommendation: Strong

Consensus Issues There were no consensus panel issues noted.

As an alternative specimen to nasopharyngeal swab, we suggest the use of mid-turbinate swab for RT-PCR* for among non-hospitalized children suspected of COVID-19 infection.

*Nasopharyngeal swab is the specimen of choice for RT-PCR for the diagnosis of COVID-19 infection in children. The use of two specific mid-turbinate RT-PCR assays is recommended: RealStar SARS-CoV-2 RT-PCR kit or Aptima SAR-CoV-2 Assay.

Certainty of evidence: Moderate Strength of recommendation: Weak

Consensus Issues There were no consensus panel issues noted.

We suggest <u>against</u> the use of nasopharyngeal aspirate as an alternative clinical specimen among non-hospitalized children suspected of COVID-19 infection.

Certainty of evidence: Low Strength of recommendation: Weak

Consensus Issues

This recommendation is based on one study performed in children however, due to the low certainty of evidence and issues on availability of the test, the panel voted against the use of the nasopharyngeal aspirate in children.

Key findings

Seven cross-sectional studies on the use of saliva specimen were retrieved however, only three studies were appraised to have no serious risks of bias. Pooled analysis was done for the three studies to check for diagnostic accuracy. Saliva RT-PCR had a sensitivity: 0.87 (95% CI 0.81, 0.91) and specificity: 0.98 (95% CI 0.97, 0.99). Predictive values (PV) ranged from 91.7% - 96.8% and likelihood ratios (LR) for positive result was 45 and 0.13 for a negative result. These accuracy estimates had moderate certainty of evidence. The following assays were used: 1) Allplex 2019-nCoV assay, 2) Cobas 6800, and 3) QuantStudio 7 system

One study each on using mid-turbinate swab and nasopharyngeal aspirate (NPA) both showed moderate sensitivity but wide confidence interval and high specificity. Other PV and LR accuracy estimates were interpreted moderate to high among non-hospitalized and hospitalized children suspected of COVID-19, respectively. However, while mid-turbinate swab evidence was moderate in certainty of evidence, NPA RT-PCR was based on a study with low certainty of evidence.

No studies in children were seen using the following specimens: oropharyngeal swab, pharyngeal swab, nasal swab, and sputum for RT-PCR.

Introduction

The RT-PCR of the nasopharyngeal swab (NPS) is the current reference standard for diagnosis of SARS-CoV-2 infection [1]. However, NPS collection causes difficulty and discomfort in children as it is invasive, requires trained healthcare personnel, and the use of protective personal equipment (PPE). Recommended alternative specimens like nasal swab, oropharyngeal/ pharyngeal swab, mid-turbinate swab, and saliva are based on studies in adults [1-3]. Saliva sample collection is easy, non-invasive, and can be performed by non-healthcare professionals or individuals themselves who are properly instructed.

Recent studies have evaluated several alternative specimens to NPS for RT-PCR in children. The sensitivity of these specimens has shown considerable variability compared with NPS, ranging from 0.60 to 0.93 [4,5]. Reported heterogeneity is likely to reflect differences in sampling techniques, symptom duration, type of population being tested and assay kit. This review was conducted to determine the diagnostic performance of alternative specimens that may be easier and safer to collect in children.

Review Methods

We searched Medline through PubMed, Cochrane CENTRAL, ChinaXiv.org, MedRxiv.org, BioRxiv, COVID-19 Open Living Evidence, Living Evidence on COVID-19, and UptoDate on January 05, 2022 (Appendix 1) using free text and MeSH terms. Our inclusion criteria may be found in Table 1. We excluded studies with incomplete data on the accuracy of the index tests. with less than 30 participants. Included studies were appraised using QUADAS 2 tool and Joanna Briggs Criteria for the study on safety of obtaining saliva specimen. Subgroup analysis was planned for aroup. symptomatology (symptomatic/ asymptomatic). ade settina (hospital/outpatient), method of specimen collection, and type of assay kit. (Appendix 4E-4M). However, data was unavailable for subgroup analysis on age group and symptomatology (symptomatic/asymptomatic).

Population	Children with COVID-19
Intervention/Exposure	Alternative clinical specimen for RT-PCR for the diagnosis of
	COVID-19
Comparison	Nasopharyngeal RT-PCR
Outcomes	Accuracy, true positives, false positives, false negatives, true
	negatves, adverse events

Results

Summary of characteristics of included studies

Out of the 1, 404 studies screened, we included 9 observational studies in this review [4-12] (Appendix 2A).

Saliva RT-PCR

Seven studies were retrieved but only three studies with no serious risk for bias were included in the meta-analysis to determine the diagnostic accuracy of using saliva specimen in the diagnosis of COVID-19. These three studies included 1,043 non-hospitalized children 1 month to18 years old suspected of COVID-19 based on the presence of symptoms or history of exposure to confirmed COVID-19 individuals. Saliva was collected either by a healthcare professional, a caregiver or self-collected under supervision. The studies used different assays, namely 1) Allplex 2019-nCoV assay 2) Cobas 6800, and 3) QuantStudio 7 system.

Mid-turbinate swab RT-PCR

One study included 569 non-hospitalized symptomatic children suspected of COVID-19, median age was 5 years (range 1 month to < 18 y/o), and with a median time between symptom onset and specimen collection of 4 days (range 1 to 14 days). Specimen were collected by trained clinical staff. They used either RealStar SARS-CoV-2 RT-PCR kit or Aptima SARS-CoV-2 Assay [12].

Nasopharyngeal aspirate RT-PCR

One study evaluated the diagnostic performance of NPA on 136 hospitalized children suspected of COVID-19 provided 300 paired NPS/NPA specimens for analysis. They used either AllplexTM 2019-nCoV assay or GeneFinder COVID-19 Plus RealAmp Kit [9].

Methodological quality

Saliva RT-PCR

The three studies were without serious risk of bias with outcomes having moderate certainty of evidence due to imprecision (Appendix 4).

Mid-turbinate swab

The certainty of evidence for mid-turbinate swab RT-PCR was rated moderate due to imprecision (Appendix 4).

Nasopharyngeal aspirate

The certainty of evidence for the sensitivity of nasopharyngeal aspirate RT-PCR was low. There was a serious risk of bias due to timing of specimen collection, and imprecision (Appendix 4).

Diagnostic accuracy (Appendices 5 & 6)

Saliva RT-PCR

Three studies were pooled to check for diagnostic accuracy of saliva as specimen. Pooled sensitivity was 0.87 (95% CI 0.81, 0.91) with wide confidence interval and specificity of 0.98 (95% CI 0.97, 0.99). It demonstrated high positive PV of 91.75% (95% CI 87.02, 94.86) and negative PV of 96.82% (95% CI 95.41, 97.81). The LRs for a positive and a negative saliva RT-PCR were 45.48 (95% CI 40.17, 51.49) and 0.13 (95% CI 0.12, 0.14), respectively. (moderate certainty of evidence).

Mid-turbinate swab RT-PCR

One study on mid-turbinate RT-PCR showed a sensitivity of 0.82 (95% CI 0.74, 0.89) (n= 569) while its specificity was high at 1.00 (95% CI 0.99, 1.00). The positive and negative PVs were 100% (95% CI 96, 100) and 96% (95% CI 94, 97), respectively and the LR for a negative test was 0.18 (95% CI 0.16, 0.19) (n= 569). The certainty of evidence was moderate.

Nasopharyngeal aspirate RT-PCR

One study on NPA RT-PCR showed sensitivity: 0.81 (95% CI 0.63, 0.93) (n = 136 with 300 paired specimen). Its specificity was high: 0.93 (95% CI 0.90, 0.94). Its positive and negative PVs were 58% (95% CI 43, 72) and 98% (95% CI 95, 99). The LR was 12 (95% CI 11, 14) for a positive test and 0.21 (95% CI 0.15, 0.29) for a negative test (n = 136 with 300 paired specimens. The certainty of evidence was low.

Adverse events

There were no reported adverse events with saliva specimen collection among hospitalized children (n= 156, one study, low certainty of evidence) (Appendix 4). There were no studies that reported adverse events on the use of mid-turbinate swab and NPA specimens.

Harms associated with false negative and false positive saliva RT-PCR results

With a sensitivity of 81-91%, saliva RT-PCR will detect 81-91 out of every 100 with COVID-19, but 9-19 will be missed as they will have false negative test. With a specificity of 97-99 %, out of every 100 individuals without COVID-19, 1-3 will be wrongly diagnosed as having COVID-19.

Other Considerations (Evidence to Decision)

Table 2. Evidence to Decision Considerations	s
--	---

Cost	 Philhealth benefit package rates for COVID-19 testing: a) plate-based NPS RT-PCR: Php 800- 2,800 b) cartridge-based NPS RT-PCR: Php 500- 2, 450 [14]. There is no Philhealth benefit package for saliva, NPS and mid-turbinate for RT-PCR [14]. Philippine Red Cross offers saliva RT-PCR test for Php 2,000 [15].
Availability	There are FDA-approved, available test kits for saliva RT-PCR, mid- turbinate swab and nasopharyngeal aspirate RT-PCR. For saliva RT- PCR, these are Allplex, Argene SarsCoV-2 R gene, Molaccu and TaqPath CE-IVD. For mid-turbinate swab RT-PCR, these are Xpert Xpress, 1 copy qPCR 4plex, TaqPath FluA FluB combo kit and TaqPath CE-IVD. For NPA RT-PCR, these are Opti, Aptima, Triplex RT qPCR, CoviPath and

	TaqPath CE-IVD. Of these kits, only the saliva RT-PCR Allplex assay was used in the study by Trobajo-San Martin.
Patient's Values or Preferences; Social Impact	398 (77%) children preferred saliva specimen collection to NPS/ OPS/ mid turbinate swab/ throat swab specimens. These included 2- 11 y/o suspected to have COVID-19 and among asymptomatic children attending school day care centers. (n=516, from three cross-sectional studies, low certainty of evidence) [16-18].
Factors to Impact Acceptability or Compliance	
	The minimum age for adequate saliva sample collection was 5 y/o in hospitalized children suspected to have COVID-19 (n= 461, one cross sectional preprint, very low certainty [20].
	With a sensitivity of 81-91%, saliva RT-PCR will detect 81-91 out of every 100 with COVID-19, but 9-19 will be missed as they will have false negative test. With a specificity of 97-99 %, out of every 100 individuals without COVID-19, 1-3 will be wrongly diagnosed as having COVID-19.
	Mid-turbinate swab : Among 67 children 2 years and older with influenza- like illness, a median discomfort score of 1 was obtained for mid-turbinate specimen collection compared with a score of 3 for NPS specimen. (validated 6-point Faces Pain scale with zero being no discomfort and 6 being worst imaginable) [22].
	NPA: In 86 adult patients with URTI, 26% complained that NPA procedure was very uncomfortable, majority (69%) said it was mildly uncomfortable and only 6% patients reported no discomfort. On a 10-point-scale, the median discomfort was 4 [23].

Recommendations from Other Groups

The US-CDC (28 Dec 2021), American Academy of Pediatrics (AAP) (17 Nov 2021) and the Philippine Pediatric Society (PPS) (08 Jan 2022) along with the Pediatric Infectious Disease Society of the Philippines (PIDSP) recommend nasal mid turbinate, nasopharyngeal aspirate, and saliva as alternative specimens to NPS in the diagnosis of COVID-19 using RT-PCR [1-3].

The Infectious Disease Society of America (IDSA) (06 May 2021) suggests mid turbinate swab, and saliva as alternative specimens to NPS in the diagnosis of COVID-19 using RT-PCR [24].

The World Health Organization (WHO) (11 Sept 2020) does not recommend the use of saliva as the sole specimen type for routine clinical diagnostics. Due to a large variety of collection methods and processing steps, WHO recommends that laboratories must collect their own performance data linked to the local method of collection and in the relevant population for testing [25].

European CDC states that further clinical studies are warranted on the sensitivity of saliva for RT-PCR for symptomatic and asymptomatic children, and to standardize the sampling collection [26].

Research Gaps

As of January 2022, there are no ongoing studies. Further studies on the sensitivity of saliva, nasopharyngeal aspirate and mid-turbinate swab specimens for RT-PCR for COVID-19 diagnosis in children are needed, stratified by age, illness duration, setting, type of assay, and method of specimen collection. Studies on other specimens like oropharyngeal, pharyngeal or nasal swab and sputum are also recommended.

In cooperation with the Pediatric Infectious Disease Society of the Philippines Funded by the Philippine Pediatric Society

References

- [1] Center for Disease Control and Prevention. Nucleic acid amplification tests (NAATs) Updated June 16, 2021 [cited 2022 Jan]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/lab/naats.html
- [2] American Academy of Pediatrics. COVID-19 testing guidance. [cited 2022 Jan 05]. Available from: https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19infections/clinical-guidance/covid-19-testing-guidance/
- [3] Philippine Pediatric Society and Pediatric Infectious Disease Society of the Philippines. Interim guidelines on the screening, classification, and management of pediatric patients with suspected or confirmed coronavirus disease 2019 (COVID-19) version 5, 08 Jan 2022 [cited 2022 Jan]. Available from: http://www.pidsphil.org/home/wpcontent/uploads/2022/01/1641793296797384.pdf
- [4] Al Suwaidi H, Senok A, Varghese R, Deesi Z, Khansaheb H, Pokasirakath S et al. (2021). Saliva for molecular detection of SARS-CoV-2 in school-age children. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 27(9), 1330–1335. https://doi.org/10.1016/j.cmi.2021.02.009
- [5] Trobajo-Sanmartín C, Adelantado M, Navascués A, Guembe MJ, Rodrigo-Rincón I, Castilla, J., et al. (2021). Self-Collection of Saliva Specimens as a Suitable Alternative to Nasopharyngeal Swabs for the Diagnosis of SARS-CoV-2 by RT-qPCR. Journal of clinical medicine, 10(2), 299. https://doi.org/10.3390/jcm10020299-
- [6] Felix AC, de Paula AV, Ribeiro AC, da Silva FC, Inemami M, Costa AA, Leal COD, Figueiredo WM, Sarmento DJS, Sassaki TA, Pannuti CS, Braz-Silva PH, Romano CM. Saliva as a reliable sample for COVID-19 diagnosis in paediatric patients. Int J Paediatr Dent. 2022 Jan;32(1):123-125. doi: 10.1111/ipd.12885. Epub 2021 Nov 24. PMID: 34816515.
- [7] Alenquer M, Silva TM, Akpogheneta O, Ferreira F, Vale-Costa S, Medina-Lopes M, Batista F, et al. Saliva molecular testing bypassing RNA extraction is suitable for monitoring and diagnosing SARS-CoV-2 infection in children
- [8] Banerjee D, Sasidharan A, Abdulhamid A, Orosco EM, Watts JL, Schuster JE, et al. (2021). Diagnostic Yield of Saliva for SARS-CoV-2 Molecular Testing in Children. Journal of the Pediatric Infectious Diseases Society, 10(10), 967–969. https://doi.org/10.1093/jpids/piab058
- [9] DiPietro GM, Capecchi E, Luconi E, Lunghi G, Bosis S, Bertolozzi G, et al. Diagnosis of SARS-CoV-2 in children: accuracy of nasopharyngeal swab compared to nasopharyngeal aspirate
- [10] Fougère Y, Schwob, J M, Miauton A, Hoegger F, Opota O, Jaton K, et al. (2021). Performance of RT-PCR on Saliva Specimens Compared With Nasopharyngeal Swabs for the Detection of SARS-CoV-2 in Children: A Prospective Comparative Clinical Trial. The Pediatric infectious disease journal, 40(8), e300–e304. https://doi.org/10.1097/INF.00000000003198
- [11] Huber M, Schreiber PW, Scheier T, Audigé A, Buonomano R, Rudiger A, Braun DL, Eich G, Keller DI, Hasse B, Böni J, Berger C, Günthard HF, Manrique A, Trkola A. High Efficacy of Saliva in Detecting SARS-CoV-2 by RT-PCR in Adults and Children. Microorganisms. 2021; 9(3):642. https://doi.org/10.3390/microorganisms9030642
- [12] Sahni LC, Avadhanula V, Ortiz CS, Feliz KE, John RE, Brown CA, et al. (2021). Comparison of Mid-Turbinate and Nasopharyngeal Specimens for Molecular Detection of SARS-CoV-2 Among Symptomatic Outpatients at a Pediatric Drive-Through Testing

Site. Journal of the Pediatric Infectious Diseases Society, 10(8), 872–879. https://doi.org/10.1093/jpids/piab046

- [13] Guzman-Ortiz AL, Abraham Josué NR, Briceida LM, Israel PO, Tania AF, Nancy MR, et al. Sensitivity of the Molecular Test in Saliva for Detection of COVID-19 in Pediatric Patients With Concurrent Conditions. Front Pediatr. 2021 Apr 12;9:642781. doi: 10.3389/fped.2021.642781. PMID: 33912522; PMCID: PMC8071854.
- [14] Philippine Health Insurance Corporation. Philhealth circular no. 2021-0021. Benefit package for SARs-CoV-2 testing using RT-PCR (revision 2) Nov 30, 2021. [cited 2022 Jan]. Available from https://www/phihealth.gov.ph
- [15] Philippine Red Cross. Saliva RT-PCR Test. [cited 2022 Jan]. Available from: https://recross.org.ph/covid-19/saliva-test/
- [16] Oliver J, Tosif S, Lee LY, Costa AM, Bartel C, Last K, et al. (2021). Adding saliva testing to oropharyngeal and deep nasal swab testing increases PCR detection of SARS-CoV-2 in primary care and children. The Medical journal of Australia, 215(6), 273–278. https://doi.org/10.5694/mja2.51188
- [17] Forster J, Streng A, Rudolph P, Rücker V, Wallstabe J, Timme S, et al. Wü-KiTa-CoV Study Group (2022). Feasibility of SARS-CoV-2 Surveillance Testing Among Children and Childcare Workers at German Day Care Centers: A Nonrandomized Controlled Trial. JAMA network open, 5(1), e2142057. https://doi.org/10.1001/jamanetworkopen.2021.42057
- [18] Aiano F, Jones SEI, Amin-Chowdhury Z, Flood J, Okike I, Brent A, et al. Feasibility and acceptability of SARS-CoV-2 testing and surveillance in primary school children in England: Prospective, cross-sectional study. PLoS One. 2021 Aug 27;16(8):e0255517. doi: 10.1371/journal.pone.0255517. PMID: 34449784; PMCID: PMC8396768.
- [19] Cooch Ρ. Watson Α, Olarte A, Crawford E. CLIAhub Hakim Consortium, Joe DeRisi, Greenhouse B, J, Turcios K, Lee Atkinson-McEvoy, Raphael Hirsch, Roberta L. Keller, Theodore Ruel, Auritte Cohen-Ross, Araceli Leon, Naomi Bardach, Supervised self-collected SARS-CoV-2 testing in indoor summer camps to inform school reopening
- [20] Delaney M, Simpson J, Thomas B, Ralph C, Evangalista M, Moshgriz M, et al. The Use of Saliva as a Diagnostic Specimen for SARS CoV-2 Molecular Diagnostic Testing for Pediatric Patients
- [21] Hoch M, Vogel S, Eberle U, Kolberg L, Gruenthaler V, Fingerle V, et al. (2021). Feasibility and Diagnostic Accuracy of Saliva-Based SARS-CoV-2 Screening in Educational Settings and Children Aged <12 Years. Diagnostics (Basel, Switzerland), 11(10), 1797. https://doi.org/10.3390/diagnostics11101797
- [22] Frazee, B. W., Rodríguez-Hoces de la Guardia, A., Alter, H., Chen, C. G., Fuentes, E. L., Holzer, A. K., Lolas, M., Mitra, D., Vohra, J., & Dekker, C. L. (2018). Accuracy and Discomfort of Different Types of Intranasal Specimen Collection Methods for Molecular Influenza Testing in Emergency Department Patients. Annals of emergency medicine, 71(4), 509–517.e1. https://doi.org/10.1016/j.annemergmed.2017.09.010
- [23] Wai, A. K., Kwok, W. O., Chan, M. S., Graham, C. A., & Rainer, T. H. (2007). Patients' perceptions of nasopharyngeal aspiration in the emergency department of a teaching hospital in Hong Kong. Emergency medicine journal : EMJ, 24(1), 35–36. https://doi.org/10.1136/emj.2006.039701
- [24] Infectious Disease Society Association. IDSA guidelines on the diagnosis of COVID-19: molecular testing. updated 23 Dec 2020. [cited 2022 Jan]. Available from: https://www.idsociety.org/practice-guideline/covid-19-guideline-diagnostics/

- [25] World Health Organization. Diagnostic testing for SARS-CoV-2. Interim guidance 11 Sept 2020. Available from: https://www.who.int/publications/i/item/diagnostic-testing-forsars-cov-2
- [26] European Centre for Disease Prevention and Control. Considerations for the use of saliva as sample material for COVID-19 testing. 03 May 2021. [cited 2022 January]. Available from: *https://www.ecdc.europa.eu/en/publica*
- [27] World Health Organization. COVID-19 disease in children and adolescents scientific brief. 29 Sept 2021. [cited 2022 Jan]. Available from: https://apps.who.int/iris/rest/bitstreams
- [28] Kim L, Whitaker M, O'Halloran A, Kambhampati A, Chai SJ, Reingold A, Armistead I, et al. Hospitalization Rates and Characteristics of Children Aged <18 Years Hospitalized with Laboratory-Confirmed COVID-19 - COVID-NET, 14 States, March 1-July 25, 2020. MMWR Morb Mortal Wkly Rep. 2020 Aug 14;69(32):1081-1088. doi: 10.15585/mmwr.mm6932e3. PMID: 32790664; PMCID: PMC7440125.
- [29] Kim L, Garg S, O'Halloran A, Whitaker M, Pham H, Anderson EJ, et al. Risk Factors for Intensive Care Unit Admission and In-hospital Mortality Among Hospitalized Adults Identified through the US Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). Clin Infect Dis. 2021 May 4;72(9):e206-e214. doi: 10.1093/cid/ciaa1012. PMID: 32674114; PMCID: PMC7454425.

Philippine Pediatric COVID-19 Living Clinical Practice Guidelines In cooperation with the Pediatric Infectious Disease Society of the Philippines

Funded by the Philippine Pediatric Society

Appendix 1. Search Yield and Results

Table 1. Search Yield and Results from different databases

Database	Search Strategy	Search Yield
Medline through PubMed	(((COVID-19) AND ((pediatric) OR (children))) AND ((((((saliva) OR (nasal swab)) OR (oropharyngeal swab)) OR (throat swab)) OR (nasopharyngeal)) OR (nasopharyngeal swab)) OR (upper respiratory tract))) AND ((((sensitivity) OR (accuracy)) OR (concordance)) OR (cost effectiveness)) OR (acceptability)) 19 AND 20	248
Cochrane CENTRAL database <u>https://clinicaltrials.gov/</u> <u>https://www.who.int/clinical-trials-registry-platform</u> <u>PubMed</u> Embase	COVID-19 as Population (PICO search, Advanced Search)	24
	Search Results There are 11 results for your search on MeSH descriptor: COVID-19 Nucleic Acid Testing Explode all trees	
ChinaXiv.org	Abstract: (COVID-19) AND Subjects::("Medicine, Pharmacy" OR "Clinical Medicine")	9
MedRxiv.org (with BioRxiv)	for term "COVID-19 AND (pediatric OR children) AND RT-PCR AND (Sensitivity OR accuracy OR cost-effectiveness OR feasibility)" and posted between "01 Jan, 2020 and 05 Jan, 2022"	376
Cross-referencing	Hoch	12
http://www.chictr.org.cn/searchprojen.aspx	COVID-19	0
COVID-19 Open Living Evidence Synthesis		0
Living Evidence on COVID-19 zika	COVID-19	736
Australia: https://covid19evidence.net.au/		0

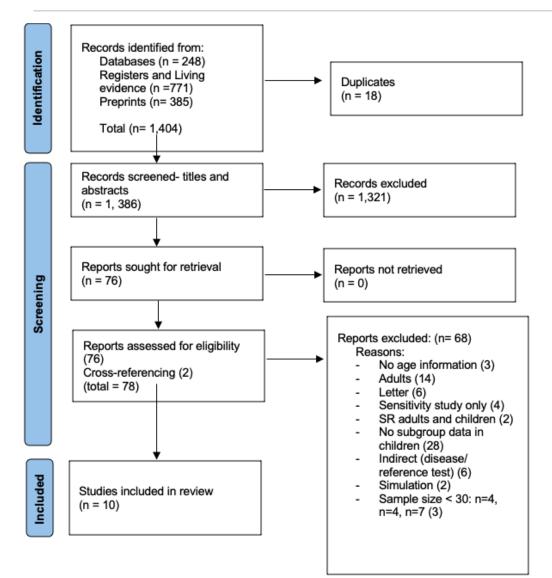


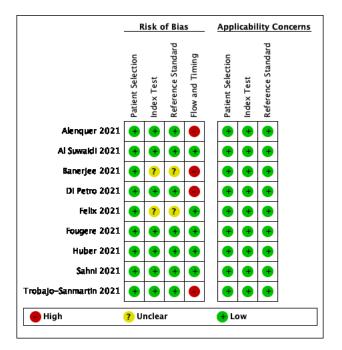
Figure 1. PRISMA flow diagram

Philippine Pediatric COVID-19 Living Clinical Practice Guidelines In cooperation with the Pediatric Infectious Disease Society of the Philippines

Funded by the Philippine Pediatric Society

Appendix 2A. Characteristics of Included Studies

Author	Study design							
Al-Suwaidi 2021 UAE	Cross- sectional	 476 suspected COVID-19 Mean age 10.8 y/o SD 3.9 years (range 3- 18 y/o) Outpatient 	Saliva RT-PCR Allplex 2019-nCoV assay (Seegene, Seoul, South Korea)	NPS RT-PCR	Sn Sp			
Fougere 2021 Switzerland	Cross- sectional	397 suspected COVID-19Outpatient	 Outpatient Cobas 6800 (Roche, Basel, Switzerland) or QuantStudio 7 system (Applied Biosystems, Waltham, United States) 					
Huber 2021 Switzerland	Cross- sectional	 170 suspected COVID-19 Median age -13 (range 5-17 y/o) Median days of symptoms 2 days (range 1-21 days) Outpatient 	saliva RT-PCR Cobas SARS- CoV-2 IVD test (Roche) on a Cobas 6800	NPS RT- PCR	Sn Sp			
Felix 2021 Brazil	Cross- sectional	50 suspected COVID-19 Mean 10.24 (+- 3.52 years) Mean days of symptoms 4.76 (+- 1.31 days) • Outpatient	Saliva RT-PCR Altona Realstar Kit	NPS RT-PCR	Sn Sp			
Alenquer 2021 Portugal	Cross- sectional	 85 suspected COVID-19 and causes unrelated to COVID-19 (other medical pathologies or surgeries) (1- 10 y/o) Saliva collected within 48 hours from NPS collection Hospital 	Saliva RT-PCR iTaq Universal Probes One-Step Kit (BIORAD, #12013250)	NPS RT-PCR	Sn Sp			
Banerjee 2021 USA	Cross- sectional	109 suspected COVID-19 Mean age 10.8 years (range 5-14 y/o) • Outpatient	Saliva RT-PCR Aptima SARS-CoV-2-Assay	NPS RT-PCR	Sn Sp			
Trobajo- Sanmartin 2021 Spain	Cross- sectional	103 suspected of COVID-19 (subgroup)Outpatient	Saliva RT-PCR AllplexTM 2019-nCoV assay (Seegene, Seoul, Korea)	NPS RT-PCR	Sn Sp			
Sahni 2021 USA	Cross- sectional	569 children suspected COVID -19 median age 5 y/o (range 1 month to <18 y/o) Median onset of symptoms 2 days (range 0-13 days) • Outpatient	Mid turbinate swab RealStar SARS-CoV-2 Rt-PCR kit (Germany) or Aptima SARS-CoV-2 Assay on the Hologic Panther System (Massachusetts)	NPS RT-PCR	Sn Sp			
Di Pietro 2021 Italy	Cross- sectional	136 suspected COVID-19 children (600 paired specimens)Hospital	nasopharyngeal aspirate AllplexTM 2019-nCoV assay with Seegene NIMBUS & STARlet instrument (Ct cut-off value for a positive test was ≤ 40) or GeneFinder COVID-19 Plus RealAmp Kit adapted to the ELITe InGenius® (ELITechGroup) (Ct cut-off value for a positive test was ≤ 45)	NPS RT-PCR	Sn Sp			


Appendix 2B. Method of Saliva Collection for RT-PCR

Study	Saliva collection
Alenquer 2021	1 ml of saliva collected with the help of a healthcare worker, after food and water abstinence for 30 minutes, by pooling saliva in the mouth and gently spitting it into a sterile container without coughing or clearing their throats
	For < 1 y/o- saliva was aspirated from the mouth with a suction tube
Al Suwaidi 2021	1- 3 ml of self-collected saliva, after food and water abstinence, by pooling saliva in the mouth for 1-2 minutes and spitting into a sterile container.
Banerjee 2021	2 ml of self-collected saliva, after food and water abstinence for 30 minutes by pooling saliva in the mouth and using a straw to fill the collection tube.
	A saliva collection kit was provided with a straw and 10 ml conical tube.
Felix 2021	The children were asked to spit into a sterile container for a collection of about 1 ml of saliva.
Fougere 2021	Saliva was either self-collected or collected by a healthcare professional or caregiver by asking the child to drool at least 10 uL of saliva in a tube.
Huber 2021	Participants were asked to clear their throat thoroughly and collect 0.5 - 1 ml of saliva (approximately a teaspoon full) one or two times into the same tube
Trobajo-Sanmartin 2021	Self-collection of saliva after 1 hour of food and water abstinence by pooling saliva in the mouth for a few seconds, and expelling the saliva into a sterile tube amounting to approximately one finger has been collected. If the amount is less, you should generate more saliva and expel it into the same tube.
Sahni 2021	The MT swab was inserted into one naris by trained clinical staff (medical assistants, licensed vocational nurses, registered nurses, and respiratory therapists). Age specific swab was used (pediatric size for < 2 y/o and adult size for > 2 y/o). The head of the child is tilted to an angle of 70 degrees and the personnel gently insert the swab into the nares, rotating the swab 2-3 times then holding the swab in place for 5 seconds. The swab is then inserted into the viral transport medium.
Di Pietro 2021	The nasopharyngeal aspirates were collected from both nostrils using a standard protocol and the Medicoplast mucus extractor 440- ch08.

In cooperation with the Pediatric Infectious Disease Society of the Philippines Funded by the Philippine Pediatric Society

Appendix 3. Detailed Study Appraisal

Figure 1. Risk of bias and applicability concerns summary of the included studies (QUADAS-2).

Philippine Pediatric COVID-19 Living Clinical Practice Guidelines In cooperation with the Pediatric Infectious Disease Society of the Philippines

Funded by the Philippine Pediatric Society

Table 1. Appraisal of studies using Joanna Briggs Critical Appraisal Instrument for Studies Reporting Prevalence Data

	Guzman-Ortiz
1. Was the sample frame appropriate to address the target population?	Yes
2. Were study participants sampled in an appropriate way?	Yes
3. Was the sample size adequate?	Yes
4. Were the study subjects and the setting described in detail?	Yes
5. Was the data analysis conducted with sufficient coverage of the identified sample?	Yes
6. Were valid methods used for the identification of the condition?	Yes
7. Was the condition measured in a standard, reliable way for all participants?	Yes
8. Was there appropriate statistical analysis?	Yes
9. Was the response rate adequate, and if not, was the low response rate managed appropriately?	Yes
Overall appraisal	Include

In cooperation with the Pediatric Infectious Disease Society of the Philippines Funded by the Philippine Pediatric Society

Appendix 4A. GRADE Evidence Profile: Saliva RT-PCR

Author(s): Eva I. Bautista, MD, Ma. Lucila M. Perez, MD, Maria Teresa S. Tolosa, MD Question: Should Saliva RT-PCR be used to diagnose COVID-19 in children? Setting: Hospital and Outpatient

Sensitivity	0.85 (95% CI: 0.76 to 0.91)	Prevalence	8 %*	33%**
Specificity	0.99 (95% CI: 0.97 to 0.99)			

Outcome (№ of		studies Study (№ of design	Factors that may decrease certainty of evidence					Effect per 1,000 patients tested		Test	
			Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
<i>True positives</i> (patients with COVID-19)	7 studies 364 patients	cross- sectional (cohort type	serious ^{1,2,3,a,b}	not serious	serious ^{2,4,c}	serious ^{2,3,4,5,d,e}	none	68 (61 to 73)	281 (251 to 300)	<i>⊕</i> 000 Very low	Critical
False negatives (patients incorrectly classified as not having COVID- 19)		type accuracy study)				12 (7 to 19)	49 (30 to 79)		Critical		
True negatives (patients without COVID- 19)	7 studies 1027 patients	cross- sectional (cohort type	serious ^{1,2,4,a,b,d}	not serious	not serious	not serious	none	911 (892 to 911)	663 (650 to 663)	<i>ФФФ</i> Moderate	Critical
False positives (patients incorrectly classified as having COVID- 19)		accuracy study)						9 (9 to 28)	7 (7 to 20)		Critical

	Nº of studies	studies Study (№ of design	F	Factors that may decrease certainty of evidence				Effect per 1,000 patients tested		Test	
Outcome (№ of			Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
Positive Predictive Value	7 studies 325 patients	cross- sectional (cohort type accuracy study)	serious ^{1,2,3,a,b}	Not serious	serious ^{3,4,,5, f}	Not serious	none	94% (95% CI 91, 96)		000 Low	Critical
Negative Predictive Value	7 studies 1066 patients	cross- sectional (cohort type accuracy study)	serious ^{1,2,3,a,b}	Not serious	serious ^{3,4,,5,6, f}	Not serious	none	94% (95% Cl 92, 96)		000 Low	Critical
Likelihood ratio for a (+) test	7 studies 1391 patients	cross- sectional (cohort type accuracy study)	Serious ^{1,2,3,a,b}	Not serious	Serious 1, 5, f	Not serious	none	48 (95% Cl	43, 53)	000 Low	Critical
Likelihood ratio for a (-) test	7 studies 391 patients	cross- sectional (cohort type accuracy study)	serious ^{1,2,3,a,b}	Not serious	serious [,] 1, 5, 7, f	Not serious	none	0.16 (95% C	21 0.16, 0.17)	000 Low	Critical

Explanations

a. Saliva specimen was collected within 24-48 hours from NPS collection

b. 109/ 335 (33%) children were analyzed.

c. High heterogeneity (I2 = 77 %). Differences in the methods of specimen collection, setting, type of assay.

d. Wide confidence interval

e. small sample size

References

1.Banerjee D, et al. 2021; 2.Trobajo-Sanmartín C, et al. 2021;

3. Alenquer M, et al. 2021;

4.Felix AC, et al. 2021;

5.Huber M, et al. 2021.

6. Al Suwaldi, 2021

7. Fougere, 2021

* 8 % pretest probability of COVID-19 among children 0-14 y/o. [27]

**33% pretest probability of ICU admission among hospitalized COVID-19 children [28,29]

Alternative specimens to nasopharyngeal swab RT-PCR

In cooperation with the Pediatric Infectious Disease Society of the Philippines Funded by the Philippine Pediatric Society

Appendix 4B. GRADE Evidence Profile: Saliva RT-PCR in studies without serious risk of bias

Author(s): Eva I. Bautista, MD, Maria Teresa S. Tolosa, MD, Ma. Lucila M. Perez, MD

Question: Should saliva RT-PCR be used to diagnose COVID-19 in children based on studies without serious risk of bias? Setting: Ambulatory

Sensitivity	0.87 (95% CI: 0.81 to 0.91)	Prevalence	8% *	33% **
Specificity	0.98 (95% CI: 0.97 to 0.99)			

	Nº of	01 J		Factors that m	ay decrease ce	tainty of evide	ence	Effect per 1,000 patients tested			Test	
Outcome	studies (№ of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	pre-test probability of0%	accuracy CoE	Importance
<i>True positives</i> (patients with COVID-19)	3 studies 205 patients	cross- sectional (cohort type	not serious	not serious	not serious	serious ^{1,a}	none	70 (65 to 73)	287 (267 to 300)	0 (0 to 0)	⊕⊕⊕ ○ Moderate	Critical
False negatives (patients incorrectly classified as not having COVID-19)		accuracy study)						10 (7 to 15)	43 (30 to 63)	0 (0 to 0)		Critical
True negatives (patients without COVID- 19)	3 studies 838 patients	cross- sectional (cohort type accuracy	not serious	not serious	not serious	not serious	none	902 (892 to 911)	657 (650 to 663)	980 (970 to 990)	⊕⊕⊕⊕ High	Critical
False positives (patients incorrectly classified as having COVID- 19)		study)						18 (9 to 28)	13 (7 to 20)	20 (10 to 30)		Critical

	Nº of	01.1		Factors that m	ay decrease cer	tainty of evide	ence	Effect pe	r 1,000 patie	nts tested	Test	
Outcome	studies (№ of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	pre-test probability of0%	accuracy CoE	Importance
Positive Predictive Value	3 studies 194 patients	cross- sectional (cohort type accuracy study)	Not serious	Not serious	Serious 1,2, b	Not serious	none	92 % (95% Cl 87, 95) 97% (95% Cl 95, 98)			<i>⊕⊕⊕○</i> Moderate	Critical
Negative Predictive Value	3 studies 849 patients	cross- sectional (cohort type accuracy study)	Not serious	Not serious	Not serious	Not serious	none	97% (95% Cl 95, 98)			<i>⊕⊕⊕⊕</i> High	Critical
Likelihood ratio for a (+) test	3 studies 1043 patients	cross- sectional (cohort type accuracy study)	Not serious	Not serious	Serious 1,2, b	Not serious	none	45 (95% CI 40, 51)			<i>⊕⊕⊕</i> ○ Moderate	Critical
Likelihood ratio for a (-) test	3 studies 1043 patients	cross- sectional (cohort type accuracy study)	Not serious	Not serious	serious 1,2, b	Not serious	none	0.13 (95% (CI 0.12, 0.14,)	<i>⊕⊕⊕</i> ○ Moderate	Critical

Explanations

a. wide confidence interval

References

1.Huber M, et al. 2021.

2. Fougere, 2021 3. Al Suwaldi, 2021

* 8 % pretest probability of COVID-19 among children 0-14 y/o. [27] **33% pretest probability of ICU admission among hospitalized COVID-19 children [28,29]

Appendix 4C. GRADE Evidence Profile: Mid-turbinate swab RT-PCR

Author(s): Eva I. Bautista, MD, Ma. Lucila M. Perez, MD, Maria Teresa S. Tolosa, MD Question: Should mid-turbinate RT-PCR be used to diagnose COVID-19 in children? Setting: Ambulatory

Sensitivity	0.82 (95% CI: 0.74 to 0.89)	Prevalence	8%*	33% **
Specificity	1.00 (95% CI: 0.99 to 1.00)			

	Nº of studies	Study		Factors that r	may decrease cer	tainty of eviden	ce		000 patients sted	Test	
Outcome	(№ of patients)	design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
<i>True positives</i> (patients with COVID-19)	1 study 114 patients	cross- sectional (cohort type	not serious	not serious	not serious	serious ^{1,a}	none	66 (59 to 71)	271 (244 to 294)	<i>⊕⊕⊕○</i> Moderate	Critical
False negatives (patients incorrectly classified as not having COVID- 19)		accuracy study)						14 (9 to 21)	59 (36 to 86)		Critical
True negatives (patients without COVID-19)	1 study 453 patients	cross- sectional (cohort type	not serious	not serious	not serious	not serious	none	920 (911 to 920)	670 (663 to 670)	<i>⊕⊕⊕⊕</i> _{High}	Critical
False positives (patients incorrectly classified as having COVID- 19)		accuracy study)						0 (0 to 9)	0 (0 to 7)		Critical
Positive Predictive Value	1 study 94 patients	cross- sectional (cohort type accuracy study)	Not serious	Not serious	Not serious	Not serious	none	100 % (95% Cl 96, 100)		ФФФФ High	Critical

	Nº of studies	Study		Factors that i	may decrease cer	tainty of eviden	ce		.000 patients sted	Test	
Outcome	(№ of patients)	design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
Negative Predictive Value	1 study 473 patients	cross- sectional (cohort type accuracy study)	Not serious	Not serious	Not serious	Not serious	none	96% (95% CI 94, 97)		<i>⊕⊕⊕⊕</i> High	Critical
Likelihood ratio for a (+) test	1 study 567 patients	cross- sectional (cohort type accuracy study)	Not serious	Not serious	Not serious	Not serious	none	undefined			Critical
Likelihood ratio for a (-) test	1 study 567 patients	cross- sectional (cohort type accuracy study)	Not serious	Not serious	Not serious	Not serious	none	0.18 (95% C	1 0.16, 0.19)	⊕⊕⊕⊕ High	Critical

Explanations

a. Wide confidence interval References 1.DiPietro GM, et al.;2021

* 8 % pretest probability of COVID-19 among children 0-14 y/o. [27] **33% pretest probability of ICU admission among hospitalized COVID-19 children [28,29]

In cooperation with the Pediatric Infectious Disease Society of the Philippines Funded by the Philippine Pediatric Society

Appendix 4D. GRADE Evidence Profile: Nasopharyngeal aspirate RT-PCR

Author(s): Eva I. Bautista, MD, Ma. Lucila M. Perez, MD, Maria Teresa S. Tolosa, MD Question: Should NPA RT-PCR be used to diagnose COVID-19 in children? Setting: Hospital

Sensitivity	0.81 (95% CI: 0.63 to 0.93)				
,		Prevalence	8 %*	33%**	
Specificity	0.93 (95% CI: 0.90 to 0.94)				

	Nº of Studies Study			Factors that m	ay decrease certa	ainty of evidend	e		000 patients sted	Test	Importance
Outcome	(№ of patients)	design	Risk of bias	Indiractness Inconsistency Imprecision		Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
<i>True positives</i> (patients with COVID-19)	1 studies 31 specimen s	cross- sectional (cohort type	serious ^{1,a}	not serious	not serious	serious ^{1,b}	none	65 (50 to 74)	267 (208 to 307)	⊕⊕○○ Low	Critical
False negatives (patients incorrectly classified as not having COVID- 19)		accuracy study)						15 (6 to 30)	63 (23 to 122)		Critical
<i>True negatives</i> (patients without COVID-19)	1 studies 269 specimen s	cross- sectional (cohort type accuracy	serious ^{1,a}	not serious	not serious	not serious	none	856 (828 to 865)	623 (603 to 630)	ФФФ О Moderate	Critical
False positives (patients incorrectly classified as having COVID- 19)		study)						64 (55 to 92)	47 (40 to 67)		Critical

	Nº of studies	Study		Factors that m	ay decrease cert	ainty of evidend	e		,000 patients sted	Test	
Outcome	(№ of patients)	design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
Positive Predictive Value	1 study 43 specimen s	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Not serious	Not serious	none	58% (95% CI 43, 72 98% (95% CI 95, 99)		ФФФ О Moderate	Critical
Negative Predictive Value	1 study 257 specimen s	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Not serious	Not serious	none	98% (95% C	CI 95, 99)	<i>⊕⊕⊕</i> ○ Moderate	Critical
Likelihood ratio for a (+) test	1 study 567 specimen s	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Not serious	Not serious	none	undefined		<i>⊕⊕⊕</i> ⊘ Moderate	Critical
Likelihood ratio for a (-) test	1 study 567 specimen s	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Not serious	Not serious	none	0.18 (95% C	CI 0.16, 0.19)	<i>⊕⊕⊕</i> ⊘ Moderate	Critical

Explanations

a. Timing of specimen collection. NPS was either collected before NPA collection or after NPA collection on follow-up.

b. wide Confidence Interval

References

1.DiPietro GM, et al.; 2021

* 8 % pretest probability of COVID-19 among children 0-14 y/o. [27] **33% pretest probability of ICU admission among hospitalized COVID-19 children [28,29]

In cooperation with the Pediatric Infectious Disease Society of the Philippines Funded by the Philippine Pediatric Society

Appendix 4E. GRADE Evidence Profile: Saliva RT-PCR among hospitalized children

Author(s): Eva I. Bautista, MD, Ma. Lucila M. Perez, MD, Maria Teresa S. Tolosa, MD Question: Should saliva RT-PCR be used to diagnose COVID-19 in hospitalized children? Setting: Hospital

Sensitivity	0.85 (95% CI: 0.71 to 0.94)	Prevalence	8% *	33% *
Specificity	1.00 (95% CI: 0.91 to 1.00)			

	Nº of studies	Study design		Factors that m	ay decrease certa	ainty of evidenc	e		,000 patients sted	Test	
Outcome	(№ of patients)		Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
<i>True positives</i> (patients with COVID-19)	1 study 46 patients	cross- sectional (cohort type accuracy	serious ^{1,a}	not serious	not serious	serious ^{1,b}	none	68 (57 to 75)	281 (234 to 310)	⊕⊕○○ Low	Critical
False negatives (patients incorrectly classified as not having COVID- 19)	accuracy study)							12 (5 to 23)	49 (20 to 96)		Critical
<i>True negatives</i> (patients without COVID-19)	1 study 39 patients	cross- sectional (cohort type accuracy	serious ^{1,a}	not serious	not serious	not serious	none	920 (837 to 920)	670 (610 to 670)	ФФФ О Moderate	Critical
False positives (patients incorrectly classified as having COVID- 19)		study)						0 (0 to 83)	0 (0 to 60)		Critical

	Nº of studies	Study		Factors that m	ay decrease certa	ainty of evidenc	e		000 patients ted	Test	
Outcome	(№ of patients)	design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
Positive Predictive Value	1 study 39 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Not serious	Not serious	none	100% (95% CI 91, 100		<i>ФФФ</i> Moderate	Critical
Negative Predictive Value	1 study 46 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Not serious	serious ^b	none	85% (95% C	:I 72, 92)	⊕⊕○○ Low	Critical
Likelihood ratio for a (+) test	1 study 85 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Not serious	Not serious	none	undefined			Critical
Likelihood ratio for a (-) test	1 study 85 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Not serious	Not serious	none	0.15 (95% C	1 0.12, 0.20)	<i>⊕⊕⊕</i> Moderate	Critical

Explanations

a. Saliva specimen was collected within 24-48 hours from

b. Wide confidence interval

References

1.Alenquer M, et al. 2021

*8 % pretest probability of COVID-19 among children 0-14 y/o. [27]
 **33% pretest probability of ICU admission among hospitalized COVID-19 children [28,29]

Alternative specimens to nasopharyngeal swab RT-PCR

Appendix 4F. GRADE Evidence Profile: Saliva RT-PCR among non-hospitalized children

Author(s): Eva I. Bautista, MD, Ma. Lucila M. Perez, MD, Maria Teresa S. Tolosa, MD Question: Should saliva RT-PCR be used to diagnose COVID-19 in children in outpatient setting? Setting: Ambulatory

Sensitivity	0.85 (95% CI: 0.75 to 0.92)	Prevalence	8% *	33 %**
Specificity	0.98 (95% CI: 0.97 to 0.99)			

	Nº of			Factors that m	ay decrease cert	ainty of evidend	ce		.000 patients sted	Test	
Outcome	studies (№ of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
<i>True positives</i> (patients with COVID-19)	6 studies 318 patients	cross- sectional (cohort type	serious ^{1,a}	not serious	serious ^{2,3,b}	serious ^{3,c,d}	none	68 (60 to 74)	281 (248 to 304)	⊕000 Very low	Critical
False negatives (patients incorrectly classified as not having COVID- 19)		accuracy study)						12 (6 to 20)	49 (26 to 82)		Critical
<i>True negatives</i> (patients without COVID-19)	6 studies 988 patients	cross- sectional (cohort type	serious ^{1,a}	not serious	not serious	not serious	none	902 (892 to 911)	657 (650 to 663)	<i>ФФФ</i> Moderate	Critical
False positives (patients incorrectly classified as having COVID- 19)		accuracy study)						18 (9 to 28)	13 (7 to 20)		Critical

	Nº of			Factors that m	ay decrease certa	ainty of evidend	ce	Effect per 1,000 patients tested		Test	
Outcome	studies (№ of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
Positive Predictive Value	6 studies 286 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	not serious	serious ^{2,3,d}	Not serious	none	94% (95% CI 90, 96)		00 Low	Critical
Negative Predictive Value	6 studies 1020 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Serious 1, 2, d	Not serious	none	95% (95% CI 93, 96)		00 Low	Critical
Likelihood ratio for a (+) test	6 studies 1306 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Serious 1, 4, d	Not serious	none	46 (95% Cl -	41, 51)	00 Low	Critical
Likelihood ratio for a (-) test	6 studies 1306 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Serious 1, 2, 4, d	Not serious	none	0.17 (95% CI 0.16, 0.17)		00 Low	Critical

Explanations

a. 109 (33%) participants were included in the analysis out of 335 included children.

b. 12= 80 %

c. small sample size

References

1.Banerjee D, et al. 2021 2. Trobajo-Sanmartín, et al. 2021 3.Felix AC, et al. 2021

* 8 % pretest probability of COVID-19 among children 0-14 y/o. [27] **33% pretest probability of ICU admission among hospitalized COVID-19 children [28,29]

Appendix 4G. GRADE Evidence Profile: Self-collected saliva for RT-PCR

Author(s): Eva I. Bautista, MD, Ma. Lucila M. Perez, MD, Maria Teresa S. Tolosa, MD Question: Should self-collected saliva for RT-PCR be used to diagnose COVID-19 in children? Setting: Ambulatory

Sensitivity	0.83 (95% CI: 0.77 to 0.88)	Prevalence	8% *	33% **
Specificity	0.98 (95% CI: 0.97 to 0.99)			

	Nº of studies					e	Effect per 1,000 patients tested				
Outcome	(№ of patients)	design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
<i>True positives</i> (patients with COVID-19)	5 studies 219 patients	cross- sectional (cohort type accuracy	serious ^{1,2,a}	not serious	serious ^{1,2,3,4,5, b,} d	serious ^{4,c}	none	66 (62 to 70)	274 (254 to 290)	⊕000 Very low	Critical
<i>False negatives</i> (patients incorrectly classified as not having COVID- 19)		study)						14 (10 to 18)	56 (40 to 76)		Critical
<i>True negatives</i> (patients without COVID-19)	5 studies 690 patients	cross- sectional (cohort type accuracy	serious ^{1,2,a}	not serious	not serious	not serious	none	902 (892 to 911)	657 (650 to 663)	<i>⊕⊕⊕</i> ⊘ Moderate	Critical
False positives (patients incorrectly classified as having COVID- 19)		study)						18 (9 to 28)	13 (7 to 20)		Critical

	Nº of studies	Study		Factors that ma	ay decrease certa	inty of evidence	e		000 patients ted	Test	
Outcome	(№ of patients)	design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
Positive Predictive Value	5 studies 195 patients	cross- sectional (cohort type accuracy study)	serious ^{1,2,a}	not serious	serious ^{1,2,3,4,5,b,} d	serious ^{4,c}	none	93% (95% CI 89,	96	<i>⊕</i> 000 Very low	Critical
Negative Predictive Value	5 studies 714 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Serious 1, 2, 5, d	Not serious	none	95% (95% C	81 93, 96)	00 Low	Critical
Likelihood ratio for a (+) test	5 studies 909 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Serious 2, 5, , d	Not serious	none	44 (95% CI	38, 51)	⊕⊕ ○○ Low	Critical
Likelihood ratio for a (-) test	5 studies 909 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Serious 1, 2. 5, d	Not serious	none	0.17 (95% C	XI 0.16, 0.18)	00 Low	Critical

Explanations

a. non-inclusion of some children in the analysis

b. different RT-PCR assays used

c. small sample size

References

1. Trobajo-Sanmartín, et al. 2021; 2.Banerjee D, et al. 2021.; 3.Huber M, et al. 2021.; 4.Felix AC, et al. 2021. 5.Alenquer, et al. 2021.

* 8 % pretest probability of COVID-19 among children 0-14 y/o. [27] **33% pretest probability of ICU admission among hospitalized COVID-19 children [28,29]

Appendix 4H. GRADE Evidence Profile: HCW/Caregiver-collected saliva for RT-PCR

Author(s): Eva I. Bautista, MD, Ma. Lucila M. Perez, MD, Maria Teresa S. Tolosa, MD Question: Should saliva collected by healthcare worker or caregiver for RT-PCR be used to diagnose COVID-19 in children? Setting: Hospital

Sensitivity	0.85 (95% CI: 0.71 to 0.94)	Prevalence	8% *	33% **
Specificity	1.00 (95% CI: 0.91 to 1.00)			

	Nº of studies	Study		Factors that m	ay decrease certa	ainty of evidenc	e		000 patients sted	Test	
Outcome	(№ of patients)	design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
<i>True positives</i> (patients with COVID-19)	1 studies 46 patients	cross- sectional (cohort type accuracy	serious ^{1,a}	not serious	not serious	serious ^{1,b}	-	68 (57 to 75)	281 (234 to 310)	⊕⊕00 Low	Critical
False negatives (patients incorrectly classified as not having COVID- 19)	-	study)						12 (5 to 23)	49 (20 to 96)		Critical
<i>True negatives</i> (patients without COVID-19)	1 studies 39 patients	cross- sectional (cohort type accuracy	serious ^{1,a}	not serious	not serious	not serious	none	920 (837 to 920)	670 (610 to 670)	ФФФ О Moderate	Critical
False positives (patients incorrectly classified as having COVID- 19)		study)						0 (0 to 83)	0 (0 to 60)		Critical

	Nº of studies	Study		Factors that m	ay decrease certa	ainty of evidenc	e		,000 patients sted	Test	
Outcome	(№ of patients)	design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
Positive Predictive Value	1 study 39 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	not serious	not serious	Not serious	none	100% (95% CI 91,	100	ФФФ Moderate	Critical
Negative Predictive Value	1 study 46 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Not serious	serious ^b	none	85% (95% C	CI 72, 92)	00 Low	Critical
Likelihood ratio for a (+) test	1 study 85 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Not serious	Not serious	none	undefined			Critical
Likelihood ratio for a (-) test	1 study 85 patients	cross- sectional (cohort type accuracy study)	serious ^{1,a}	Not serious	Not serious	Not serious	none	0.15 (95% C	CI 0.12, 0.20)	ФФФ О Moderate	Critical

Explanations

a. Saliva specimen was collected 24-48 hours after NPS collection.

b. wide confidence interval

References

1.Alenquer M, et al. 2021

* 8 % pretest probability of COVID-19 among children 0-14 y/o. [27]

In cooperation with the Pediatric Infectious Disease Society of the Philippines Funded by the Philippine Pediatric Society

Appendix 4I. GRADE Evidence Profile: Saliva Allplex nCoV assay

Author(s): Eva I. Bautista, MD, Ma. Lucila M. Perez, MD, Maria Teresa S. Tolosa, MD Question: Should saliva Allplex nCoV assay be used to diagnose COVID-19 in children? Setting: Outpatient

Sensitivity	0.76 (95% CI: 0.68 to 0.83)	Prevalence	8% *	33% **
Specificity	0.99 (95% CI: 0.97 to 1.00)			

	Nº of		F	Factors that may decrease certainty of evidence					000 patients sted	Test		
Outcome	studies (№ of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance	
True positives (patients with COVID- 19)	2 studies 122 patients	cross- sectional (cohort type	serious ^{1,a}	not serious	Serious ^{1,2,b}	not serious	none	61 (54 to 66)	251 (224 to 274)	<i>⊕⊕⊖⊖</i> _{Low}	Critical	
False negatives (patients incorrectly classified as not having COVID-19)		accuracy study)						19 (14 to 26)	79 (56 to 106)		Critical	
True negatives (patients without COVID-19)	2 studies 457 patients	cross- sectional (cohort type	serious ^{1,a}	not serious	not serious	not serious	none	911 (892 to 920)	663 (650 to 670)	ФФФ О Moderate	Critical	
False positives (patients incorrectly classified as having COVID-19)		accuracy study)						9 (0 to 28)	7 (0 to 20)		Critical	
Inconclusive	0 studies patients	-	-	-	-	-	-		<u>.</u>	-		
Complications	0 studies patients									-		

Explanations

a. Unclear in the number of patients excluded in the analysis

b. 95 % confidence intervals do not overlap.

References

1. Trobajo-Sanmartín C, et al. 2021.

2. Al-Suwaidi H, et al. 2021

* 8 % pretest probability of COVID-19 among children 0-14 y/o. [27]

Appendix 4J. GRADE Evidence Profile: Cobas 6800 assay

Author(s): Eva I. Bautista, MD, Ma. Lucila M. Perez, MD, Maria Teresa S. Tolosa, MD Question: Should saliva Cobas 6800 assay be used to diagnose COVID-19 in children? Setting: Outpatient

Sensitivity	0.93 (95% CI: 0.78 to 0.99)	Prevalence	8% *	33% **
Specificity	0.96 (95% CI: 0.92 to 0.99)			

	Nº of			Factors that m	ay decrease ce	rtainty of evide	ence		.000 patients sted	Test	
Outcome	studies (№ of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
<i>True positives</i> (patients with COVID- 19)	1 studies 101 patients	cross-sectional (cohort type accuracy	not serious	not serious	not serious	serious ^{1,a}	none	74 (62 to 79)	307 (257 to 327)	ФФФ О Moderate	Critical
False negatives (patients incorrectly classified as not having COVID-19)	_	study)						6 (1 to 18)	23 (3 to 73)		Critical
True negatives (patients without COVID-19)	1 studies 296 patients	cross-sectional (cohort type accuracy	not serious	not serious	not serious	not serious	none	883 (846 to 911)	643 (616 to 663)	ФФФ High	Critical
False positives (patients incorrectly classified as having COVID-19)		study)						37 (9 to 74)	27 (7 to 54)		Critical
Inconclusive	0 studies patients	-	-	-	-	-	-		·	-	
Complications	0 studies patients									-	

Explanations

a. wide Confidence Interval

References

1.Fougere, et al. 2021.

* 8 % pretest probability of COVID-19 among children 0-14 y/o. [27]

Appendix 4K. GRADE Evidence Profile: Altona Realstar Kit assay

Author(s): Eva I. Bautista, MD, Ma. Lucila M. Perez, MD, Maria Teresa S. Tolosa, MD Question: Should saliva Altona Realstar kit assay be used to diagnose COVID-19 in children? Setting: Outpatient

Sensitivity	0.80 (95% CI: 0.44 to 0.97)	Prevalence	8% *	33% **
Specificity	1.00 (95% CI: 0.91 to 1.00)			

	Nº of		F	Factors that ma	ay decrease cer	tainty of evide	nce		.000 patients sted	Test	
Outcome	studies (№ of patients)	Study design	Risk of bias Indirectness Inconsistency Imprecision Publication bias		pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance			
<i>True positives</i> (patients with COVID- 19)	1 studies 10 patients	cross- sectional (cohort type	serious ^{1,a}	not serious	not serious	serious	none	64 (35 to 78)	264 (145 to 320)	<i>⊕⊕⊖⊖</i> _{Low}	Critical
False negatives (patients incorrectly classified as not having COVID-19)		accuracy study)						16 (2 to 45)	66 (10 to 185)		Critical
<i>True negatives</i> (patients without COVID-19)	1 studies 40 patients	cross- sectional (cohort type	serious ^{1,a}	not serious	not serious	not serious	none	920 (837 to 920)	670 (610 to 670)	ФФФ О Moderate	Critical
False positives (patients incorrectly classified as having COVID-19)		accuracy study)						0 (0 to 83)	0 (0 to 60)		Critical
Inconclusive	0 studies patients	-	-	-	-	-	-		·	-	
Complications	0 studies patients									-	

Explanations

a. unclear if reference test was interpreted independently from the index test

References 1.Felix AC, et al. 2021.

* 8 % pretest probability of COVID-19 among children 0-14 y/o. [27]

Appendix 4L. GRADE Evidence Profile: ITaq Universal Probes assay

Author(s): Eva I. Bautista, MD, Ma. Lucila M. Perez, MD, Maria Teresa S. Tolosa, MD Question: Should saliva Itaq Universal Probes assay be used to diagnose COVID-19 in children? Setting: Hospital

Sensitivity	0.85 (95% CI: 0.71 to 0.94)	Prevalence	8% *	33% **
Specificity	1.00 (95% CI: 0.91 to 1.00)			

	Nº of studies (№	Study design	F	Factors that ma	ay decrease cer	tainty of evide	nce		.000 patients sted	Test	
Outcome	studies (№ of patients)	Study design	Risk of bias Indirectness Inconsistency Imprecision Publication bias		pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance			
<i>True positives</i> (patients with COVID- 19)	1 studies 46 patients	cross- sectional (cohort type	serious ^{1,a}	not serious	not serious	serious ^{1,b}	none	68 (57 to 75)	281 (234 to 310)	€€OO Low	Critical
False negatives (patients incorrectly classified as not having COVID-19)	-	accuracy study)						12 (5 to 23)	49 (20 to 96)		Critical
True negatives (patients without COVID-19)	1 studies 39 patients	cross- sectional (cohort type	serious ^{1,a}	not serious	not serious	not serious	none	920 (837 to 920)	670 (610 to 670)	<i>⊕⊕⊕⊖</i> Moderate	Critical
False positives (patients incorrectly classified as having COVID-19)	-	accuracy study)						0 (0 to 83)	0 (0 to 60)		Critical
Inconclusive	0 studies patients	-	-	-	-	-	-		·	-	
Complications	0 studies patients									-	

Explanations

a. Timing of specimen collection. Saliva specimen was collected 24- 48 hours after NPS collection.

b. small sample size

References

1.Alenquer M, et al. 2021.

* 8 % pretest probability of COVID-19 among children 0-14 y/o. [27]

Appendix 4M. GRADE Evidence Profile: Aptima SARS-CoV-2-Assay

Author(s): Eva I. Bautista, MD, Ma. Lucila M. Perez, MD, Maria Teresa S. Tolosa, MD Question: Should saliva Aptima SARS-CoV-2 assay be used to diagnose COVID-19 in children? Setting: Outpatient

Sensitivity	0.93 (95% CI: 0.83 to 0.98)	Prevalence	8% *	33% **
Specificity	0.96 (95% CI: 0.87 to 1.00)			

	Nº of studies (№		F	Factors that ma	ay decrease cer	tainty of evide	nce		,000 patients sted	Test	
Outcome	studies (№ of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of8%	pre-test probability of33%	accuracy CoE	Importance
<i>True positives</i> (patients with COVID- 19)	1 studies 57 patients	cross- sectional (cohort type	serious ^{1,a}	not serious	not serious	Serious ^b	none	74 (66 to 78)	307 (274 to 323)	<i>⊕⊕⊖⊖</i> _{Low}	Critical
False negatives (patients incorrectly classified as not having COVID-19)		accuracy study)						6 (2 to 14)	23 (7 to 56)		Critical
<i>True negatives</i> (patients without COVID-19)	1 studies 53 patients	cross- sectional (cohort type	serious ^{1,a}	not serious	not serious	not serious	none	883 (800 to 920)	643 (583 to 670)	ФФФ О Moderate	Critical
False positives (patients incorrectly classified as having COVID-19)	-	accuracy study)						37 (0 to 120)	27 (0 to 87)		Critical
Inconclusive	0 studies patients	-	-	-	-	-	-			-	
Complications	0 studies patients									-	

Explanations

a. non-inclusion of other participants in the analysis

b. wide Confidence Interval

References

1.Banerjee D, et al. 2021.

* 8 % pretest probability of COVID-19 among children 0-14 y/o. [27]

Appendix 4N. GRADE Evidence Profile: Adverse events of saliva RT-PCR

Author(s): Eva I. Bautista, MD, Ma. Lucila M. Perez, MD, Maria Teresa S. Tolosa, MD Question: Should Saliva for RT-PCR compared to NPS/OPS RT-PCR be used to diagnose COVID-19? Setting: Hospitalized

Certainty a	ssessment								
N ⊵ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Impact	Certainty	Importance
Adverse e	vents								
1	observational studies	not serious	not serious	not serious	not serious	none	There were no reported adverse events in 156 hospitalized children suspected of COVID-19 who had saliva and NPS/OPS RT-PCR.	@@ 00 Low	IMPORTANT

Reference

1. Guzman-Ortiz AL, et al. 2021

In cooperation with the Pediatric Infectious Disease Society of the Philippines Funded by the Philippine Pediatric Society

Appendix 5. Forest Plots

Study Alenquer 2021 Al Suwaidi 2021 Banerjee 2021 Felix 2021 Fougere 2021 Huber 2021 Trobajo-Sanmarti	n 202	1	TP 39 64 53 86 28 29	0 6 2 0 5 5	7 39 10 396 4 51	0.85 [0.7 0.86 [0.7 0.93 [0.8 0.80 [0.4 0.85 [0.7 0.93 [0.7	1, 0.94] 7, 0.93] 3, 0.96] 4, 0.97] 7, 0.91] 8, 0.99]	1.00 [0.91, 1.00] 0.99 [0.97, 0.99] 0.96 [0.87, 1.00] 1.00 [0.91, 1.00] 0.96 [0.96, 0.99] 0.96 [0.92, 0.99]		Specificity (95% Cl)
<i>Pooled</i> Figure 1. Fo	res	t pl	lot	of t			7%	19 [0.97,0.99] I ² = 6 % ecificity of sali	va RT-PCR	
Studies with no s	serio	us ri	sk o	of bia	s Risk of	fBias				
Study	ТР	FP	FN	ΤN	Sensiti	vity (95% CI)	Specific	ity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Al Suwaidi 2021	64	6	10			[0.77, 0.93]		[0.97, 0.99]		
Fougere 2021	86	5	15	291	0.85	[0.77, 0.91]	0.98	[0.96, 0.99]	-	
Huber 2021	28	5	2	135	0.93	[0.78, 0.99]	0.96	[0.92, 0.99]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Pooled (without serious risk of bias) 0.87 [0.81, 0.91] 0.98 [0.97, 0.99]

Figure 2. Forest plot of the sensitivity analysis of saliva RT-PCR: Studies with no serious risk of bias

Hospital												
Study Alenquer 2021	ТР 39		FN 7	тn 39			y (95% C .71, 0.94			y (95% CI) .91, 1.00]		Specificity (95% Cl)
Outpatient											0 0.2 0.4 0.0 0.8 1	0 0.2 0.4 0.8 0.8 1
Study			TF	P FP	FN	ΤN	Sensitiv	ity (95	5% CI)	Specificity (95% CI)	Sensitivity (95% Cl)	Specificity (95% CI)
Al Suwaidi 2021			64	6	10	396	0.86	[0.77,	0.931	0.99 [0.97, 0.99]		
Banerjee 2021			53	2	4	51	0.93	[0.83,	0.98]	0.96 [0.87, 1.00]		
Felix 2021			6	0	2	40	0.80	0.44	0.97]	1.00 [0.91, 1.00]	_	
Fougere 2021			86	i 5	15	291	0.85	[0.77	0.91]	0.98 [0.96, 0.99]	-	
Huber 2021			28	5	2	135		0.78	-	0.96 [0.92, 0.99]		-
Trobajo-Sanmart	in 20	21	29	Ō	19	55		[0.45,				0 0.2 0.4 0.6 0.8 1

Pooled (outpatient setting)

0.85 [0.75, 0.92] 0.98 [0.97, 0.99]

Figure 3. Forest plot of the sensitivity and specificity of saliva RT-PCR according to setting (hospital vs outpatient)

Specimen collect	ted b	уН	ealth	care	wor	ker or	r caregiver				
Study	ТР	FP	FN	τN	Sen	sitivit	y (95% CI)	Specificit	ty (95% CI)	Sensitivity (95% Cl)	Specificity (95% CI)
Alenquer 2021	39	0	7	39	0	.85 [0	.71, 0.94]	1.00 [0	0.91, 1.00]		0 0.2 0.4 0.6 0.8 1
Self-collection										0 0.2 0.4 0.0 0.8 1	0 0.2 0.4 0.0 0.0 1
Study			TF	, Eb	FN	TN	Sensitivit	y (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Al Suwaidi 2021			64	6	10	396	0.86 [0	.77, 0.93]	0.99 [0.97, 0.99]		-
Banerjee 2021			53	2	4	51	0.93 [0	.83, 0.98]	0.96 [0.87, 1.00]		
Felix 2021			6	i 0	2	40	0.80 [0	.44, 0.97]	1.00 [0.91, 1.00]	_	
Huber 2021			- 26	5	2	135	0.93 [0	.78, 0.99]	0.96 [0.92, 0.99]		-
Trobajo-Sanmart	in 20	21	29	0	19	55	0.60 [0	.45, 0.74]	1.00 [0.94, 1.00]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
Pooled							0.83 [0	.77, 0.88]	0.98 [0.97, 0.99]		

Figure 4. Forest plot of the sensitivity and specificity of saliva RT-PCR by method of collection

In cooperation with the Pediatric Infectious Disease Society of the Philippines Funded by the Philippine Pediatric Society

Appendix 6. Evidence to Decision Framework Table 1. Summary of initial judgements prior to the panel discussion (N = 10)

FACTORS			JUD	GEMENT (N = 10)				F	RESEARCH EVIDENCE/ADDITIONAL CONSIDERATIONS
Problem	No	Ye: (10		Va	ries	Uncert	ain		
Benefits	Large (1)	Moderate (9)	Small	Trivial	Varies	Uncert	ain		Saliva specimen is preferred by majority of children 2-11 years old
Harm	Large	Moderate	Small (10)	Trivial	Varies	Uncert	ain	آ •	Median score: 4/10 for discomfort
Certainty of evidence	High	Moder (6)		Lc (4		Very le	w	• 1	Saliva: moderate Mid-turbinate: moderate NPA: low
Balance of effects	Favors test (5)	Probably favors test (5)	Does not favor test or no test	Probably favors no test	Favors no test	Varies	Uncertain (8)		
Accuracy	Very accurate	Accurate (7)	Inaccurate	Very inaccurate	Varies	Uncert (3)	ain		Saliva and mid-turbinate: moderate Sn, high Sp, wide CI Insufficient for NPA
Values	Important uncertainty or variability (1)	Possibly importan variab (3)	ility	or var	ortant uncertainty iability 6)	No important ur variabi	,		
Resources required	Uncertain (1)	Varies	Large costs (2)	Moderate costs (7)	Negligible costs or savings	Moderate savings	Large savings		
Certainty of evidence of resources required	No include (9)		Very low	Low (1)	Moderate	High	1		
Cost- effectiveness	No included studies (9)	Varies	Favors the comparison (1)	Probably favors the comparison	Does not favor the comparison or the intervention	Probably favors the intervention	Favors the intervention		
Equity	Uncertain (1)	Varies (2)	Reduced	Probably reduced (4)	Probably no impact	Probably increased (3)	Increased		
Acceptability	Uncertain (3)	Varies (1)	No	Probably no	Probably yes (5)	Yes (1)			
Feasibility	Uncertain (3)	Varies	No	Probably no	Probably yes (6)	Yes (1)			

Additional Comments

Equity, acceptability and feasibility depend on whether there will be enough Philhealth/government support to shoulder these costs.